first approximation, a closest-packed sheet. The sequence of layers is $A B B A \cdots$, but one of the two neighbouring B layers is translated by a vector ($a / 2+$ $b / 2$) with respect to the other, in such a way that each $\mathrm{Ba}(2)$ atom has a Bi atom as nearest neighbour on the adjacent layer of the same kind. The atoms of these B layers are not exactly coplanar. Each $\mathrm{Ba}(2)$ atom is shifted $0 \cdot 68 \AA$ from the plane built up by the Bi atoms in the direction of the adjacent B layer.

The $\mathrm{Ba}(1)$ atoms have 12 neighbours, $4 \mathrm{Bi}, 4 \mathrm{Ba}(1)$ and $4 \mathrm{Ba}(2)$ atoms at distances of $3 \cdot 668,3 \cdot 722$ and $4 \cdot 173$ \AA, respectively. The $\mathrm{Ba}(2)$ atoms have nine neighbours, $1 \mathrm{Bi}, 4 \mathrm{Bi}$ and $4 \mathrm{Ba}(1)$ atoms at distances of $3 \cdot 556,3 \cdot 784$ and $4 \cdot 173 \AA$, respectively. Additionally there are $4 \mathrm{Ba}(2)$ atoms of the adjacent B layer at distances appreciably greater ($4 \cdot 701 \AA$) which probably contribute to a smaller extent to the bonding. Each Bi atom is surrounded by nine barium atoms forming the unit BiBa_{9} similar to the SbSr_{9} units found in the isomorphous compound $\mathrm{Sr}_{2} \mathrm{Sb}$. The average of the $\mathrm{Bi}-\mathrm{Ba}$ distances is $3.707 \AA$.

The $\mathrm{Ba}(1)-\mathrm{Ba}(1)$ distances of $3.722 \AA$ mentioned above are appreciably shorter than the minimum distance of $4.34 \AA$ in metallic barium and probably indicate some ionic character of bonds.

A list of interatomic distances is given in Table 2.
Thanks are due to Huber Diffraktions-Technik for facilities to obtain the intensity data. Dr Müller kindly allowed us to use a sample used in the work for his Thesis. We are indebted to the Deutsche ForschungsGemeinschaft for financial support given to M.M.R.

Table 2. Interatomic distances
Estimated standard deviation $\pm 0.008 \AA$.

Around $\mathrm{Ba}(1)$		Around $\mathrm{Ba}(2)$	
$\mathrm{Ba}(1)-\mathrm{Bi}$	$3 \cdot 668 \AA(\times 4)$	$\mathrm{Ba}(2)-\mathrm{Bi}$	$3 \cdot 556 \AA(\times 1)$
$\mathrm{Ba}(1)-\mathrm{Ba}(1)$	$3 \cdot 722(\times 4)$	$\mathrm{Ba}(2)-\mathrm{Bi}$	$3.784(\times 4)$
$\mathrm{Ba}(1)-\mathrm{Ba}(2)$	$4 \cdot 173(\times 4)$	$\mathrm{Ba}(2)-\mathrm{Ba}(1)$	$4 \cdot 173(\times 4)$
		$\mathrm{Ba}(2)-\mathrm{Ba}(2)$	$4 \cdot 701(\times 4)$
Around Bi		Averages	
$\mathrm{Bi}-\mathrm{Ba}(2)$	$3 \cdot 556 \AA(\times 1)$	$\mathrm{Ba}(1)-\mathrm{Bi}$	$3.668 \AA$
$\mathrm{Bi}-\mathrm{Ba}(1)$	$3 \cdot 668(\times 4)$	$\mathrm{Ba}(1)-\mathrm{Ba}$	3.948
$\mathrm{Bi}-\mathrm{Ba}(2)$	$3 \cdot 784(\times 4)$	$\mathrm{Ba}(2)-\mathrm{Bi}$	3.738
		$\mathrm{Ba}(2)-\mathrm{Ba}$	$4 \cdot 173$
		$\mathrm{Bi}--\mathrm{Ba}$	$3 \cdot 707$

References

Brauer, G. \& Müller, O. (1961). Angew. Chem. 73, 169. Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

International Tables for X-ray Crystallography (1962). Vol. III, p. 216. Birmingham: Kynoch Press.
Kubaschewski, O. \& Villa, H. (1949). Z. Elektrochem. 53, 32-40.
Martinez-Ripoll, M., Haase, A. \& Brauer, G. (1973). Acta Cryst. B29, 1715-1717.
Müller, O. (1960). Thesis, Freiburg, Germany.
Shchukarev, S. A., Morozova, M. P., Kan Kho-in \& Sharov, V. T. (1957). J. Gen. Chem. USSR, 27, 321-323.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The X-RAY System of Crystallographic Programs. Univ. of Maryland, College Park, Maryland.
Zhuravlev, N. N. \& Melik-Adamyan, V. P. (1961). Sot. Pliys. Crystallogr. 6, 99-100.

Acta Cryst. (1974). B30, 2004

The Crystal Structure of $\mathrm{Ca}_{5} \mathrm{Bi}_{3}$

By M. Martinez-Ripoll, A. Haase \& G. Brauer
Chemisches Laboratorium der Universität Freiburg, 78 Freiburg (Breisgau), Albertstrasse 21, Germany (BRD)

(Received 25 March 1974; accepted 15 April 1974)
$\mathrm{Ca}_{5} \mathrm{Bi}_{3}$ crystallizes in the orthorhombic system, space group Pnma, with 4 formula units in a cell of size $a=12.722$ (8), $b=9.666$ (6), $c=8.432$ (6) \AA. The calculated density is $5.298 \mathrm{~g} \mathrm{~cm}^{-3}$. These data compare with those given by Brauer \& Müller [Angew. Chem. (1961). 73, 169]: 12.74, 9.69, 8.46 \AA and macroscopic density $5 \cdot 21 \mathrm{~g} \mathrm{~cm}^{-3} . \mathrm{Ca}_{5} \mathrm{Bi}_{3}$ is isomorphous with $\mathrm{Ca}_{5} \mathrm{Sb}_{3}$.

Introduction

Single crystals of $\mathrm{Ca}_{5} \mathrm{Bi}_{3}$ can be prepared by a method similar to that described in the case of $\mathrm{Ca}_{5} \mathrm{Sb}_{3}$ (Mar-tinez-Ripoll \& Brauer, 1974). The crystals are black and have nearly prismatic shape, the a axis being parallel to the needle axis. Because of their extreme instability in air they had to be kept under argon atmosphere.

A prismatic single crystal with nearly circular cross section (0.16 mm diameter) was used mounted on a

Huber diffractometer (RHD 402) on-line to a PDP-8 computer. The intensity data from 16 reciprocal layers perpendicular to the a axis were obtained by using graphite-monochromated Mo $K \alpha$ radiation in connexion with a scintillation detector and pulse-height discrimination. 1378 reflexions were collected. Of this total, 1070 reflexions were considered 'observed' according to the criterion $I>2 \sigma(I)$ and used in the refinement. Absorption corrections ($\mu R=4.04$) were made assuming cylindrical crystal shape. The intensities were
corrected for Lorentz and polarization effects in the usual manner.
Atomic coordinates and isotropic temperature factors taken from the isomorphous compound $\mathrm{Ca}_{5} \mathrm{Sb}_{3}$ (Martinez-Ripoll \& Brauer, 1974) were refined by the least-squares procedure using the program $C R Y L S Q$ written by F.A. Kundell and assuming unit weights. Scattering factors used were those for neutral atoms (Hanson, Herman, Lea \& Skillman, 1964) corrected for anomalous dispersion with $\Delta f^{\prime}=0 \cdot 2$ and $\Delta f^{\prime \prime}=0.4$ for Ca , and with $\Delta f^{\prime}=-4.7$ and $\Delta f^{\prime \prime}=11.7$ for Bi , as listed in International Tables for X-ray Crystallography (1962). The final residual $R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|=0.065$ is based on the parameters given in Table 1. A table listing the observed and calculated structure factors is available.* The programs used in this determination were those of the X-RAY 70 System (Stewart, Kundell \& Baldwin, 1970) running on the 1108 UNIVAC computer of the University of Freiburg, Germany.

Table 1. Positional and thermal parameters
Standard deviations are given in parentheses.

	x / a	y / b	z / c	B
$\mathrm{Ca}(1)$	$0.0756(5)$	$0.0445(5)$	$0.6913(6)$	$1.9(1) \AA^{2}$
$\mathrm{Ca}(2)$	$0.2277(6)$	$\frac{1}{4}$	$0.3208(8)$	$1.9(1)$
$\mathrm{C}(3)$	$0.2912(7)$	$\frac{1}{4}$	$0.803(8)$	$2.0(1)$
$\mathrm{Ca}(4)$	$0.5065(6)$	$\frac{1}{4}$	$0.4637(8)$	$1.7(1)$
$\mathrm{Bi}(1)$	$0.1708(1)$	$-0.0136(1)$	$0.0657(1)$	$1.56(2)$
$\mathrm{Bi}(2)$	$-0.0164(1)$	$\frac{1}{4}$	$0.4208(1)$	$1.54(2)$

Discussion

Thermal and microscopic work on the binary system $\mathrm{Ca}-\mathrm{Bi}$ undertaken by Kurzyniec (1931) indicated the existence of two compounds in the system: $\mathrm{Ca}_{3} \mathrm{Bi}_{2}$ and CaBi_{3}. According to Iandelli (1949), the compound CaBi_{3} is not cubic. Later investigations of Brauer \& Müller (1961) indicated that the stoichiometry of $\mathrm{Ca}_{3} \mathrm{Bi}_{2}$ mentioned above should be revised to $\mathrm{Ca}_{7} \mathrm{Bi}_{4}$. As part of a programme of investigation of intermetallic compounds, we have solved the crystal structure of the latter compound. Its correct formula $\mathrm{Ca}_{5} \mathrm{Bi}_{3}$, was deduced from this determination.
$\mathrm{Ca}_{5} \mathrm{Bi}_{3}$ is isomorphous with $\mathrm{Ca}_{5} \mathrm{Sb}_{3}$ (Martinez-Ripoll \& Brauer, 1974). Its crystal structure can be described in terms of atomic layers perpendicular to the \mathbf{b} direction (see Martinez-Ripoll \& Brauer, 1974, Fig. 2). The number of neighbours around the calcium atoms (Table 2) can be found to be between 12 and 13 by applying a criterion similar to that proposed by Brunner \& Schwarzenbach (1971). If the distances from the considered atom to all other atoms are ordered in a series according to increasing value, there is a gap or minimum

[^0]in this series which limits the area of neighbours. There are two kinds of Bi atoms. $\mathrm{Bi}(1)$ is surrounded by 9 calcium atoms forming the unit BiCa_{9} similar to the SbCa_{9} units in the isomorphous compound $\mathrm{Ca}_{5} \mathrm{Sb}_{3}$ (Martinez-Ripoll \& Brauer, 1974, Fig. 7). The Bi(2) atoms are surrounded by only 8 calcium atoms in the form shown in Fig. 8 of Martinez-Ripoll \& Brauer (1974). The average values of the $\mathrm{Bi}(1)-\mathrm{Ca}$ and $\mathrm{Bi}(2)-$ Ca distances are 3.423 and $3.263 \AA$, respectively. A list of all interatomic distances is given in Table 2.

Table 2. Interatomic distances
Estimated standard deviation $\pm 0.008 \AA$.

Around $\mathrm{Ca}(1)$		Around $\mathrm{Ca}(2)$	
$\mathrm{Ca}(1)-\mathrm{Bi}(2)$	$3.093 \AA(\times 1)$	$\mathrm{Ca}(2)-\mathrm{Bi}(2)$	$3 \cdot 218 \AA(\times 1)$
$-\mathrm{Bi}(2)$	$3 \cdot 244(\times 1)$	-Bi(1)	$3 \cdot 340(\times 2)$
$-\mathrm{Bi}(1)$	$3 \cdot 409(\times 1)$	$-\mathrm{Bi}(1)$	$3 \cdot 412(\times 2)$
-Bi(1)	$3.427(\times 1)$	-Bi(2)	$3 \cdot 840(\times 1)$
-Bi(1)	$3.757(\times 1)$	$-\mathrm{Ca}(4)$	$3.697(\times 1)$
$-\mathrm{Ca}(4)$	$3 \cdot 631$ ($\times 1$)	$-\mathrm{Ca}(4)$	$3 \cdot 746$ ($\times 1$)
$-\mathrm{Ca}(3)$	3.641 ($\times 1$)	- $\mathrm{Ca}(1)$	$3.944(\times 2)$
$-\mathrm{Ca}(4)$	$3 \cdot 804(\times 1)$	-Ca(3)	$4.049(\times 1)$
- $\mathrm{Ca}(1)$	$3 \cdot 854(\times 1)$	- $\mathrm{Ca}(1)$	$4 \cdot 177(\times 2)$
$-\mathrm{Ca}(2)$	$3.944(\times 1)$		
- $\mathrm{Ca}(1)$	$3.972(\times 1)$		
$-\mathrm{Ca}(3)$	$4 \cdot 143(\times 1)$		
$-\mathrm{Ca}(2)$	$4 \cdot 177(\times 1)$		
Around $\mathrm{Ca}(3)$		Around $\mathrm{Ca}(4)$	
$\mathrm{Ca}(3)-\mathrm{Bi}(2)$	$3 \cdot 118 \AA(\times 1)$	$\mathrm{Ca}(4)-\mathrm{Bi}(2)$	$3 \cdot 255 \AA(\times 1)$
$-\mathrm{Bi}(1)$	$3 \cdot 349(\times 2)$	-Bi(1)	$3 \cdot 304(\times 2)$
-Bi(1)	$3 \cdot 484(\times 2)$	-Bi(1)	$3 \cdot 324(\times 2)$
$-\mathrm{Ca}(1)$	$3 \cdot 641(\times 2)$	- $\mathrm{Ca}(1)$	$3.631(\times 2)$
$-\mathrm{Ca}(4)$	$3.947(\times 1)$	- $\mathrm{Ca}(2)$	$3.697(\times 1)$
- $\mathrm{Ca}(2)$	$4 \cdot 049(\times 1)$	-Ca(2)	$3 \cdot 746(\times 1)$
- $\mathrm{Ca}(1)$	$4 \cdot 143(\times 2)$	- $\mathrm{Ca}(1)$	$3 \cdot 804(\times 2)$
$-\mathrm{Ca}(4)$	$4 \cdot 258(\times 1)$	- Ca (3)	$3.947(\times 1)$
		$-\mathrm{Ca}(3)$	$4 \cdot 258(\times 1)$
Around $\mathrm{Bi}(1)$		Around $\mathrm{Bi}(2)$	
$\mathrm{Bi}(1)-\mathrm{Ca}(4)$	$3 \cdot 304 \AA(\times 1)$	$\mathrm{Bi}(2)-\mathrm{Ca}(1)$	$3.093 \AA(\times 2)$
$-\mathrm{Ca}(4)$	$3 \cdot 324(\times 1)$	$-\mathrm{Ca}(3)$	$3 \cdot 118(\times 1)$
$-\mathrm{Ca}(2)$	$3 \cdot 340(\times 1)$	$-\mathrm{Ca}(2)$	$3 \cdot 218(\times 1)$
$-\mathrm{Ca}(3)$	$3 \cdot 349(\times 1)$	$-\mathrm{Ca}(1)$	$3 \cdot 244(\times 2)$
- $\mathrm{Ca}(1)$	$3 \cdot 409(\times 1)$	$-\mathrm{Ca}(4)$	$3 \cdot 255(\times 1)$
$-\mathrm{Ca}(2)$	$3 \cdot 412(\times 1)$	$-\mathrm{Ca}(2)$	$3 \cdot 840$ ($\times 1$)
$-\mathrm{Ca}(1)$	$3 \cdot 427(\times 1)$		
$-\mathrm{Ca}(3)$	$3 \cdot 484(\times 1)$		
$-\mathrm{Ca}(1)$	$3.757(\times 1)$		
-Bi(1)	$4.492(\times 1)$		
-Bi(1)	$4.571(\times 1)$		
	Ave		
$\mathrm{Ca}(1)-\mathrm{Bi}$	$3 \cdot 386 \AA$	$\mathrm{Ca}(2)-\mathrm{Bi}$	$3.427 \AA$
$-\mathrm{Ca}$	$3 \cdot 896$	$-\mathrm{Ca}$	3.962
$\mathrm{Ca}(3)-\mathrm{Bi}$	$3 \cdot 357$	$\mathrm{Ca}(4)-\mathrm{Bi}$	$3 \cdot 302$
$-\mathrm{Ca}$	3.975	$-\mathrm{Ca}$	$3 \cdot 815$
$\mathrm{Bi}(1)-\mathrm{Ca}$	$3 \cdot 423$	$\mathrm{Bi}(2)-\mathrm{Ca}$	$3 \cdot 263$

We acknowledge the facilities given by Huber Dif-fraktions-Terhnik to obtain the intensity data. Thanks are also due to Dr Müller for allowing us to use a sample from the work for his Thesis. We are indebted to the Deutsche Forschungs-Gemeinschaft for financial support given to M.M.R.

References

Brauer, G. \& Müller, O. (1961). Angew. Chem. 73, 169. Brunner, G. O. \& Schwarzenbach, D. (1971). Z. Kristallogr. 133, 127-133.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Iandelli, A. (1949). Rend. Seminar. Fac. Sci. Univ. Cagliari, 19, 133-139.

International Tables for X-ray Crystallography (1962). Vol. III, p. 216. Birmingham: Kynoch Press.
Kurzyniec, E. (1931). Bull. Intern. Acad. Polon. Sci., Sér. A, pp. 31-58.
Martinez-Ripoll, M. \& Brauer, G. (1974). Acta Cryst. B30, 1083-1087.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The X-RAY System of Crystallographic Programs. Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1974). B30, 2006

The Crystal Structure of $\alpha-\mathbf{M g}_{3} \mathbf{S b}_{\mathbf{2}}$

By M. Martinez-Ripoll, A. Haase and G. Brauer
Chemisches Laboratorium der Universität Freiburg, 78 Freiburg (Breisgau), Albertstrasse 21, Germany (BRD)

(Received 25 March 1974; accepted 15 April 1974)

Abstract

$\alpha-\mathrm{Mg}_{3} \mathrm{Sb}_{2}$ crystallizes as an $\mathrm{La}_{2} \mathrm{O}_{3}$-type structure, space group $P \overline{3} m 1$, with one formula unit in a cell of dimensions $a=4.568 \pm 0.003$ and $c=7.229 \pm 0.004 \AA$. The calculated density is $4.02 \mathrm{~g} \mathrm{~cm}^{-3}$. This crystal structure has been solved by three-dimensional Patterson synthesis and refined by the least-squares procedure, including 387 reciprocal points, to a residual of $R=0.069$. No 'micro-twinning' occurs as described for $\mathrm{La}_{2} \mathrm{O}_{3}$.

Introduction

Early work on the binary system $\mathrm{Mg}-\mathrm{Sb}$ undertaken by Grube (1906) showed the existence of a phase of composition $\mathrm{Mg}_{3} \mathrm{Sb}_{2}$ with a melting point of $1245^{\circ} \mathrm{C}$ (Bolshakov, Bulonkov \& Tsirlin, 1962). This compound ($\alpha-\mathrm{Mg}_{3} \mathrm{Sb}_{2}$) was identified by Zintl \& Husemann (1933) as being isotypic with $\mathrm{La}_{2} \mathrm{O}_{3}$. The existence of a polymorphic transformation from $\alpha-\mathrm{Mg}_{3} \mathrm{Sb}_{2}$ to a cubic $\mathrm{Mn}_{2} \mathrm{O}_{3}$-type structure (presumably $\beta-\mathrm{Mg}_{3} \mathrm{Sb}_{2}$) was suggested by Zintl (1934).

More recently a statistical distribution in the crystal structure of $\mathrm{La}_{2} \mathrm{O}_{3}$ has been reported (Müller-Buschbaum \& von Schnering, 1965) which is inconsistent with the original model (Pauling, 1929). In order to elucidate whether $\alpha-\mathrm{Mg}_{3} \mathrm{Sb}_{2}$ presents the same kind of 'micro-twinning' described for $\mathrm{La}_{2} \mathrm{O}_{3}$, and as a part of a programme aimed at achieving a better understanding of the structural principles of intermetallic compounds with extremely positive metals we have solved the crystal structure of $\alpha-\mathrm{Mg}_{3} \mathrm{Sb}_{2}$ using singlecrystal diffraction data.

Experimental

Single crystals of $\alpha-\mathrm{Mg}_{3} \mathrm{Sb}_{2}$ were prepared by cooling a melt of composition $3 \mathrm{Mg}+2 \mathrm{Sb}$ with a small excess of magnesium from $1100^{\circ} \mathrm{C}$ to room temperature in argon atmosphere. They have a metallic appearance and are resistant to air.

Precession photographs taken with Mo $K \alpha$ radiation showed hexagonal symmetry. The systematic absences
correspond to the space groups $P 3 m 1, P 31 m, P 312$, $P 321, P \overline{3} 1 m$ and $P \overline{3} m 1$. As discussed later, the space group $P \overline{3} m 1$ was assumed. A least-squares fit of the θ values for several reflexions led to the following dimensions: $a=4 \cdot 568 \pm 0.003$ and $c=7.229 \pm 0.004 \AA$, in good agreement with the values 4.573 and $7.229 \AA$ reported previously by Zintl \& Husemann (1933). The calculated density with one formula unit in the cell is $4.02 \mathrm{~g} \mathrm{~cm}^{-3}$, agreeing well with the macroscopic value of $4.09 \mathrm{~g} \mathrm{~cm}^{-3}$ (Weibke, 1930).

The intensity data from seven reciprocal layers perpendicular to the a axis were obtained from a platelike single crystal ($0.08 \times 0.24 \times 0.32 \mathrm{~mm}$) mounted on a single-crystal Huber diffractometer (RHD 402) online to a PDP-8 computer. Graphite-monochromated Mo $K \alpha$ radiation was used in conjunction with a scintillation detector and pulse-height discrimination. 405 independent reflexions were collected in the range $3^{\circ}<\theta<50^{\circ}$. Of this total, 387 reflexions were considered 'observed' according to the criterion $I>2 \sigma(I)$ and used in the refinement. The intensities were corrected for Lorentz and polarization effects in the usual manner. Absorption corrections ($\mu R \simeq 1 \cdot 7$) were considered irrelevant for the purpose of this study. In any case, such corrections would be tedious because of the irregular form of the crystal.

Determination of the structure

The first step in the solution of this crystal structure was based on the interpretation of the three-dimensional Patterson function. The peak distribution in the

[^0]: * This table has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30445 (7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 INZ, England.

